VERSOS18 (BILBAO): INTEGRANDO LOS VERTEDEROS EN LA ECONOMÍA CIRCULAR; 4º COMUNICACIÓN

EXPERIENCIAS EN LA MEJORA DE LOS PROCESOS DE VALORIZACIÓN DE ESCORIAS NEGRAS Y EMPLEO DE ÁRIDOS SIDERÚRGICOS

Dr. Jokin Rico Arenal

8 Noviembre 2018

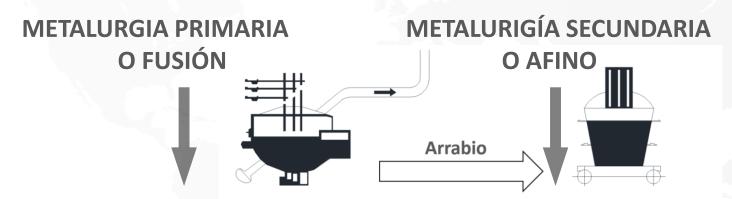
ÁRIDOS SIDERÚRGICOS

Un producto de alto valor añadido a partir de la valorización de las escorias negras generadas en la producción del acero

VALOR AÑADIDO

¿Qué son los áridos siderúrgicos? Áridos Calizos

Áridos Siderúrgicos



GENERACIÓN

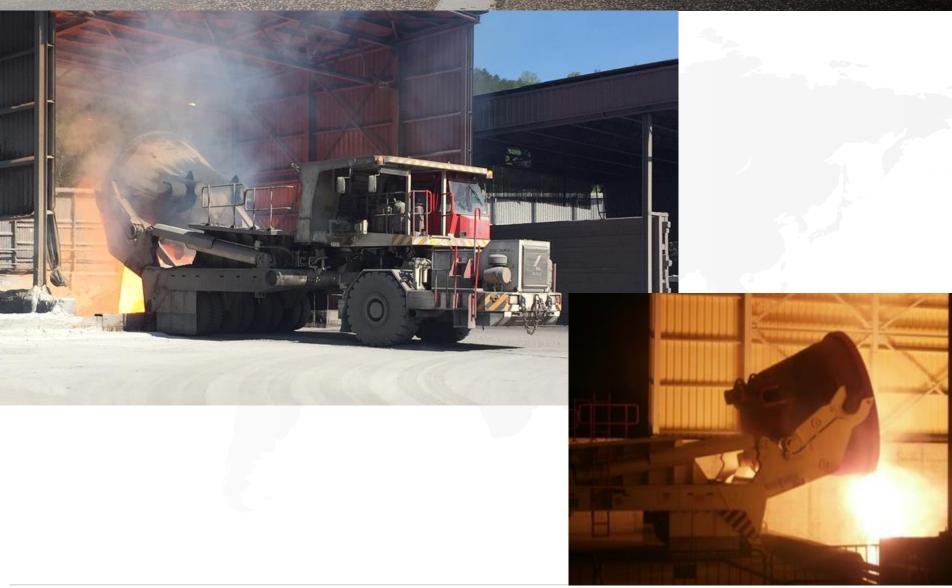
La fabricación del acero consta de dos etapas diferenciadas:

ESCORIA NEGRA

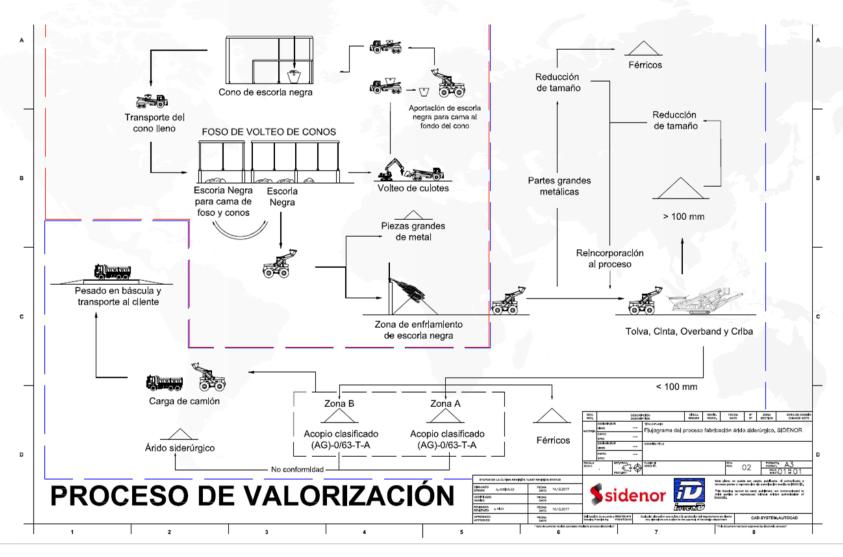
- Reduce el consumo de energía
- El tiempo de fusión
- Reduce el ataque químico del acero sobre el horno
- Mejora la calidad del acero

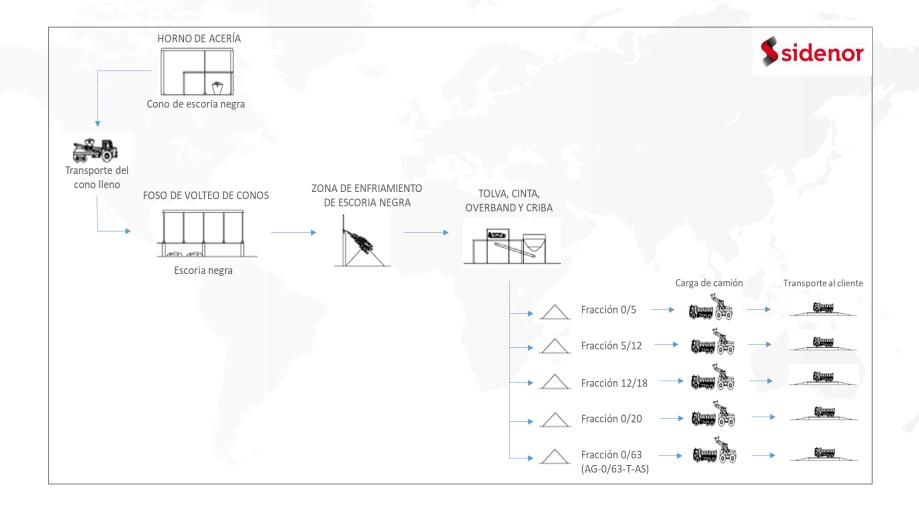
ESCORIA BLANCA

- 90 a 120 kg escoria/ tonelada de acero producido
- 1,5 Mt/año aprox. de escoria negra en España
- Ejemplo: Sidenor (Basauri) produce alrededor de 80.000 t/año

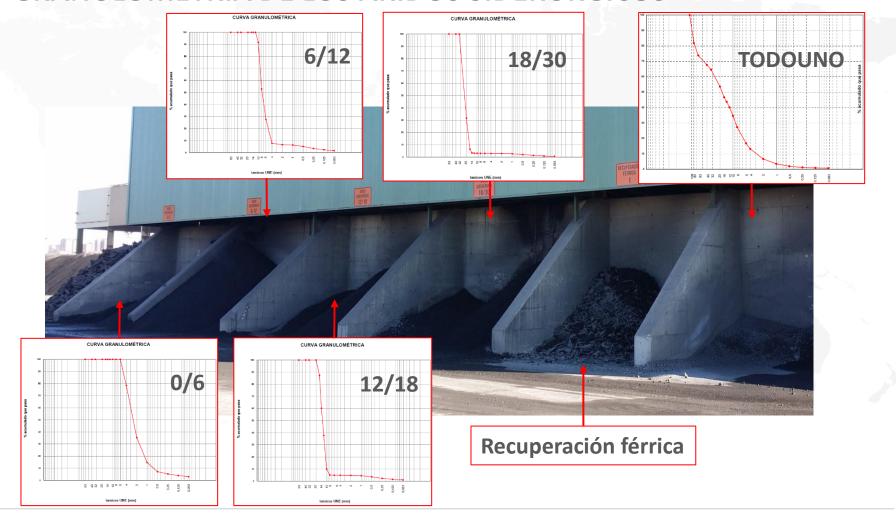


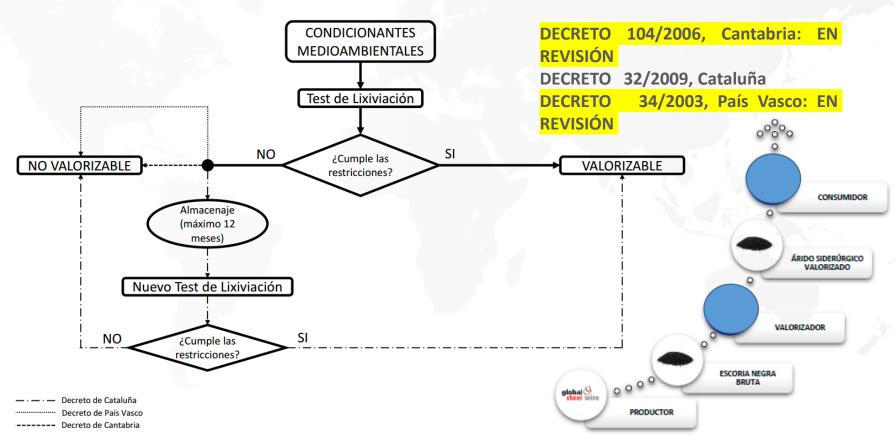
Valorización de escoria negra



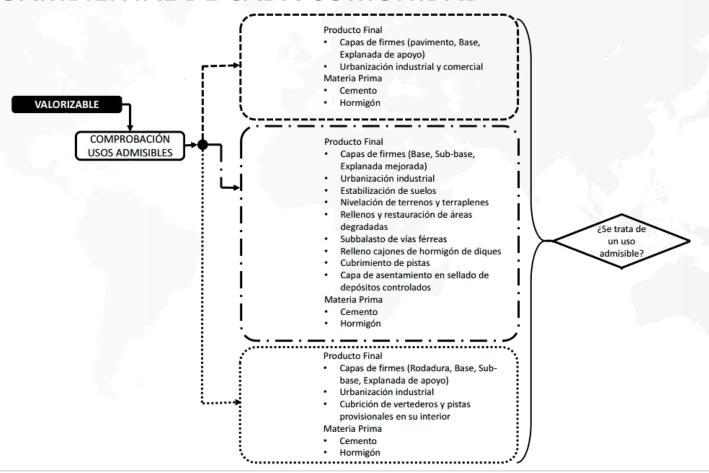


FLUJOGRAMA DE VALORIZACIÓN

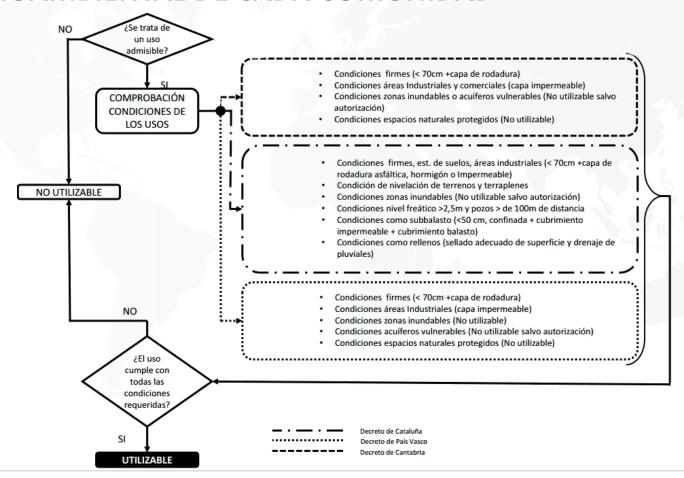



GRANULOMETRÍA DE LOS ÁRIDOS SIDERÚRGICOS

DIAGRÁMA DE VALORIZACIÓN SEGÚN LA REGULACIÓN MEDIOAMBIENTAL



NO NECESARIO CUMPLIR CON LIXIVIADOS PARA SU USO EN HORMIGONES Y MEZCLAS BITUMINOSAS


DIAGRÁMA DE VALORIZACIÓN SEGÚN LA REGULACIÓN MEDIOAMBIENTAL DE CADA COMUNIDAD

DIAGRÁMA DE VALORIZACIÓN SEGÚN LA REGULACIÓN MEDIOAMBIENTAL DE CADA COMUNIDAD

REGULACIONES TÉCNICAS NACIONALES

- Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3)
- Norma para el Dimensionamiento de Firmes de la Red de Carreteras del País Vasco:
 - Anejo 3.- áridos siderúrgicos de horno eléctrico para mezclas Anejo 4.- áridos siderúrgicos de horno eléctrico para zahorras
- Instrucción 6.1-IC de "Secciones de firme"
- Instrucción de Hormigón Estructural EHE-08

ÁRIDO SIDERÚRGICO CON MARCADO CE

ETIQUETA

DECLARACIÓN DE PRESTACIONES

			D	ECLARA	CIÓN D Nº 0821			NES		
(AG)-0/63-1										
	ire y dirección ACEROS ESP									
Barrio Ugar	te s/n 48970-									
 Uso F Aridos para 	revisto: capas granul	ares para us	en capas	estructurales	de firmes.					
 Sister SISTEMA 2 	na de evaluad	ión y verifica	ción de la ci	onstancia de	las prestacio	nes:				
5. Organ	ismo notifica:									
	ada					PRODUC	CIÓN EN F	ABRICA.		
Sistema de	evaluación emitido	.SISTEMA 2								
Fecha de E	misiön	17/02//20	17		021201					
	a certificada : aciones Decia		42:2002+A	1:2007						
		CARAC	TERISTICA	AS ESENCIA	LES			PRESTACIONES		CIÓN TÉCNICA
				PARTICULA				Flan		NIZADA 933-3:2012
			FAMAÑO D					0/63	UNE-EN	933-1:2012
		CATEG		RANULOME RA LA GRAN	TRIA			G _A 75		
				NA LA GRAN AS PARTICUI		ATIPICA		GT _A 25		
		C	ONTENIDO	EN FINOS				5		
			ATH DE A	E DE ARENA METILENO				NPD NPD		
	P	ORCENTAJI	DE PART	CULAS MAC ENTACIÓN Y	HACADA8			C ₉₀₀		5:2012/A1:2005
	REGI	EST	ABILIDAD	EN VOLUME	N	20		V _s	UNE-EN 1744	1:2010+A1:2013
				N DE AGUA B GRUESOS		08		NPD NPD		
	SULFA	OS SOFOR	ES EN AG	UA DE ARIDI BLES EN AC	DS RECICLA	DOS		NPD		
		SULFA	AZUFRE	TOTAL				NPD 8 ₁	UNE-EN 1744 UNE-EN 1744	1:2010+A1:201
				EN HUMUS				NEGATIVO	UNE-EN 1744 Apd	
			ACIDO F	ULVICO				NPD		
EFECTI		TRATADAS	CON CON	GLOMERAN	TES HIDRAL	JLICOS	OWDE	NPD		
				AL DESGAST				NPD		
				ESADOS PO		ÓN		Ver tabla adjunta*	Norma E	N 12457-3
	LIBE	UKABILIDA	PHENIE		RIZACION			NPD NPD		
* Valores II						ma/ka) cor	forme al D	ecreto 34/2003 y Dec	reto 49/2009	
Ba	Cd	Cr	Mo	NI	Pb	80	v	Zn	Fe*	80,2
≤ 17	≤ 0,009	≤ 2,6	£1,3	≤0,8	≤ 0,8	≤ 0,09	£1,3	≤ 1,2	≤ 18	≤ 377
 La pre 		ción de prest	aciones se o					deciaradas en el pur e indicado en el punt		

De acuerdo con los principios de la Decisión 768/2008/CE del Parlamento Europeo, el macado CE simboliza **la conformidad de un producto** con los requisitos esenciales de seguridad y salud que le son aplicables e impuestos al fabricante

VENTAJAS COMPETITIVAS DEL ÁRIDO SIDERÚRGICO vs NATURALES

- 1. Alta resistencia a la abrasión y fricción
- 2. Áridos duros, densos, químicamente estables
- 3. Muy buena adhesión con betún
- 4. Mayor coeficiente de Los Ángeles
- 5. Mejor CPA
- 6. Menor desgaste en capas de rodadura:
 - i. CRT más altos
 - ii. Reducción de costes de mantenimiento
 - iii. Mejora la seguridad de la carretera relacionada con el deslizamiento de los vehículos

DESVENTAJAS

- 1. Necesidad de tratamiento previo (maduración o envejecimiento)
- 2. Elevada densidad mayor coste transporte a obra

CUMPLIMIENTO NORMATIVA TÉCNICA SEGÚN USO DEL ÁRIDO SIDERÚRGICO

ÁRIDO PARA CAPAS GRANULARES O ZAHORRAS / Art. 510 del PG-3

PARÁMETRO	PG-3 art. 510	RESULTADO	ОК
COMPUESTOS DE AZUFRE TOTALES [SO ₃ %]	E	- 53	
CONTACTO CAPAS TRATADAS CON CEMENTO	< 0,5	0,46	✓
DEMÁS CASOS	< 1	0,46	✓
ÍNDICE DE LAJAS	< 20	2	✓
LÍMITE LÍQUIDO	LL < 6 para T00	0	✓
EQUIVALENTE DE ARENA SE ₄	> 40 para T00	87	
COEFICIENTE DE LIMPIEZA [%]	< 2	0,3	✓
COMPUESTOS DE AZUFRE TOTALES [SO ₃ %]		-	
CONTACTO CAPAS TRATADAS CON CEMENTO	< 0,5	0,46	✓
DEMÁS CASOS	< 1	0,46	✓
EXPANSIVIDAD [%] (7 días)	< 5	0,02-0,5	✓
ÍNDICE GRANULOMÉTRICO ENVEJECIMIENTO- IGE [%]	< 1	0,05	✓
CONTENIDO EN CAL LIBRE CaO [%]	< 0,5	< 0,5	✓
CONTENIDO DE MAGNESIA LIBRE MgO [%]	< 5*	3,49	✓

CUMPLIMIENTO NORMATIVA TÉCNICA SEGÚN USO DEL ÁRIDO SIDERÚRGICO

TERRAPLÉN Y SUELO SELECCIÓN / Art. 330 del PG-3

PARÁMETRO	PG-3 art. 330	RESULTADO	ОК
CONTENIDO EN MATERIA ORGÁNICA* [%]	< 0,2	0,37 *oxidado de compuestos metálicos	✓
CONTENIDO DE SALES SOLUBLES [%]	< 0,2	0,18	✓
TAMAÑO MÁXIMO ≤ 100 mm	Dmax ≤ 100	< 100	✓
TAMIZ 0,40 UNE < 15 %	15%	1,30%	✓
LÍMITE LÍQUIDO	LL < 30	0	1
ÍNDICE PLÁSTICO	IP < 10	0	✓
PARÁMETRO	6.1 - IC	RESULTADO	OK
SUELO SELECCIONADO TIPO 3	C.B.R > 20	74	>
ENSAYO PROCTOR, Densidad / Humedad Opt.	-	2,5 g/cm ³ / 4,1 %	
PESO ESPECÍFICO, DENSIDAD APARENTE, D.A. DEL ÁRIDO [T/m³]	-	3,81 / 3,7	

CUMPLIMIENTO NORMATIVA TÉCNICA SEGÚN USO DEL ÁRIDO SIDERÚRGICO

ÁRIDO PARA MEZCLAS BITUMINOSAS / Art. 542-543 del PG-3

PARÁMETRO	PG-3 art. 542-543	RESULTADO	ОК
ÍNDICE DE LAJAS [%]	≤ 20	2	~
COEFICIENTE DE LOS ÁNGELES [%]			✓
Artículo 542	≤ 20 para T00 y T0	17	√
Artículo 543			~
ввтм а	≤ 20 para T1 y T2	17	✓
ввтм в	≤ 25 para T3, arcén	17	✓
PA	≤ 20 para T1 y T2	17	✓
COEFICIENTE DE PULIMENTO ACELERADO	≥ 56 para T00 y T0	59	✓

^{*}coeficientes de los Ángeles de 15-16 (árido siderúrgico machacado)

MEZCLAS BITUMINOSAS > Experiencia pionera Cantabria

15 de abril de 2009 (1.400 m²;7cm)

AC-16-Surf 50/70 TRAMO 2B:

46% fracción gruesa árido siderúrgico 23% fracción fina árido siderúrgico 27% fracción fina árido calizo 0/4mm

	S1	S2A	S2B	S3	S4
Densidad [g/cm³]	2,927	2,82	2,882	2,827	2,829
Betún [%]	4,54	4,45	4,48	4,69	4,71
F/B	1,4	1,1	1,3	<u>-</u>	-
Huecos mezcla [%]	3,04	6,77	4,64	6,05	5,95
Estabilidad [kN]	14,85	13,06	15,60	12,83	12,91
Deformación [mm]	2,45	2,65	2,88	2,6	2,65
CRD	62	57	-	62,4	59

MEZCLAS BITUMINOSAS > Avenida de los Castros (Santander) 2010

AC-16-Surf 50/70 con árido siderúrgico:

100% de la fracción gruesa 50% de la fracción fina

MEZCLAS BITUMINOSAS > Variante Santillana-Suances CA-136

y CA-137 Año 2010 AC16 Surf 50/70 S

ACIO SUIT SOJ TO S							
Áridos	%	Kg					
0/6 Caliza	25		238				
0/6 Escoria	25		239				
6/12 Escoria	21		203				
12/18 Escoria	25		240				
Filler	4	38					
Betún	S/áridos	4,38	40				
Detun	S/mezcla 4,20		42				
SUMA	100		1000				

	Viveda			
	PARÁMETRO	Valor Normativo	RESULTADO	ОК
	ESTABILIDAD [kN]	> 15 para T00 y T0	17,38	✓
	DEFORMACIÓN [mm]	2 a 3,5 para T1 y T2	3,15	✓
7	HUECOS EN MEZCLA [%]	4 a 6 T00 y T0	6	✓
	HUECOS EN ÁRIDOS [%]	> 15 para mezclas-16	15,45	✓

Marshall. derogado 2008, se utiliza para conocer el comportamiento de la mezcla

MEZCLAS BITUMINOSAS > Variante Santillana-Suances CA-136 y CA-137

Ensayo realizado con el **equipo SCRIM** en mayo del 2014. Evaluando las características adherentes de los pavimentos con la calzada mojada, obteniendo el **CRT** y la **textura.**

	Árido natural (Sílice)	Árido siderúrgico	Normativa
Localización	CA-136 Variante de Santillana	CA-137 Variante de Suances	
CRT	64,0	74,4	65 ⁽¹⁾
Macrotextura	0,80 mm	0,81 mm	0,70 (2)

- (1) Medida a los dos meses de la puesta en servicio de la capa.
- (2) Medida antes de la puesta en servicio de la capa.

LA OBRA SE EJECUTÓ EN 2010, POR LO QUE LOS RESULTADOS SON TRAS CASÍ 4 AÑOS EN SERVICIO

MEZCLAS BITUMINOSAS > Experiencias del grupo SIEC

AC 16 50/70 S AC 22 50/70 S

- Muelle de Carga en Global Steel Wire
- Urbanización Sector 3 en Soto de la Marina (Ayuntamiento de Santa Cruz de Bezana)
- Urbanización Sector 8 en Soto de la Marina (Ayuntamiento de Santa Cruz de Bezana)
- Carretera de acceso a Rasillo (Gobierno de Cantabria)
- Varias calles de Ayuntamiento de Santander
- Parcela 71 de la ZAL (Puerto de Santander)
- Variante de Reinosa (Gobierno de Cantabria)

Mezclas bituminosas > Experiencias en el País Vasco

Carretera GI-627

Tipo mezcla	IMD ₂₀₁₁	CRT ₂₀₁₂	CRT ₂₀₁₃	REDUCCIÓN
BBTM 11A árido siderúrgico (1)	13.658	58	54	7%
BBTM 11A ofita (2)	9.225	59	52	12%

⁽¹⁾ Categoría T2A, ejecutado en julio de 2009

Se observa que el C.R.T. evoluciona mejor en la mezcla con áridos siderúrgicos a pesar de que tenga un año más de vida y la IMD2011 en la misma sea mayor.

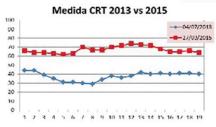
⁽²⁾ Categoría T2A, ejecutado en abril de 2010

Mezclas bituminosas > Experiencias en el País Vasco

Bizkaia

- Variante Este, Orueta Ibarsusi, Bi-631 con T3A, en el año 2002
- Ramal de enlace de Kastrexana, Bi-636, con T3B en el año 2002
- Eje del Ballonti, BI-628 Nocedal-Balparda, fase II con T2B, 2002
- BI-732 San Fausto Montorreta, con T2A, año 2002
- Eje del Ballonti, Bi-628, Cueto-Portugalete Tronco, con T1, 2007

Gipuzkoa


- GI-631 (pk 32,650-34,420), con categoria de trafico pesado T2B
- N-634 (pk 58,315-60,700), con T1B
- GI-2630 (pk 13,130 14,875), con T2B
- GI-627 (pk 30,000-32,500), con T1B
- Mezclas bituminosas tipo AC y trafico pesado T3A en la GI-2133, Refuerzo del firme en la carretera GI-3610 de Zizurkil a Andoain por Aduna
- Mezclas en frio en la GI-3481 (pk 0,480 2,240), con trafico T4B y en la GI-3750 entre pk 0,000 y 9,700, con trafico T3B

MEZCLAS BITUMINOSAS > Experiencia A2 Cataluña Año 2014

Demarcación de carreteras del Estado en Cataluña: CM-29-B/2014. Rehabilitación superficial del firme para mejora del CRT en tramos entre los P. Km. 582,100 y 583,000 de la Autovía A-2 con el extendido de una mezcla asfáltica tipo BBTM, con árido siderúrgico CPA>57"

67,15 en 2015

Sustitución de mezcla PA12 por BBTM 11 B, 30 mm

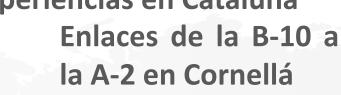
Arena 0/2 caliza
Árido 5/12 siderúrgico (LA=13, CPA=66)

Polvo mineral de aportación calizo.

Betún modificado tipo PMB 45/80 65, 4,15%

Densidad 2,656 T/m³

ITSR 99%


^{*}La A2 PK 530 a PK 580 parcheos de reparación y restaurado blandones

^{*}Se tiene previsto en los próximos meses asfaltar por completo con árido siderúrgico la entrada de Barcelona por la B-23 desde Sant Just d'Esvern a BCN

MEZCLAS BITUMINOSAS > Otras experiencias en Cataluña Tramo entre las carreteras C-17 (PK 1+720) y N-150 (PK 0+000)

MEZCLAS BITUMINOSAS > Otras experiencias en Cataluña Renovación del asfalto de Ayuntamiento de Barcelona la carretera C-16 Avinguda de Bordó

2013

JUSTIFICACIÓN TÉCNICA DE SU USO COMO ÁRIDO EN CAPAS DE RODADURA

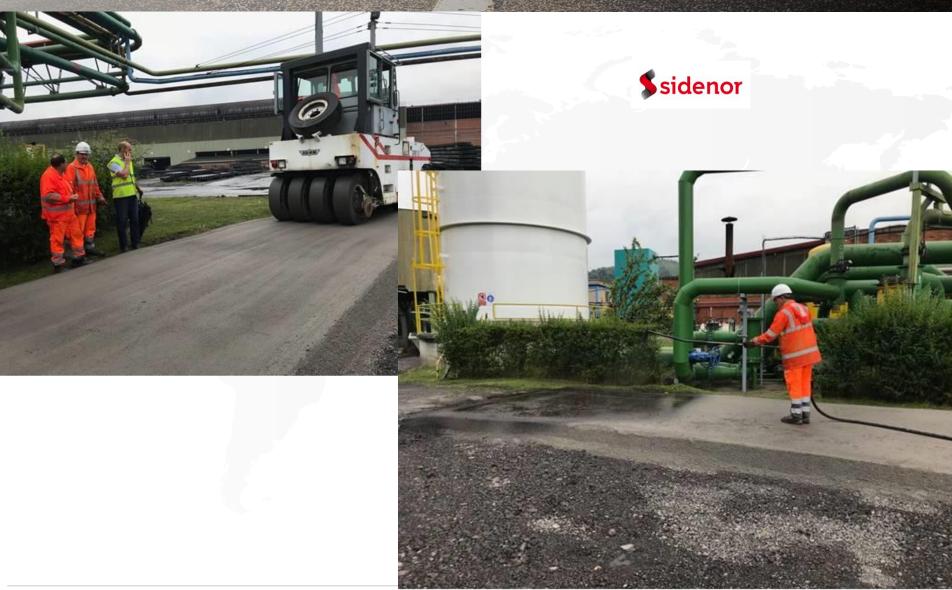
Los ensayos de los Ángeles, el coeficiente de pulimento acelerado, índice de resistencia conservada y el ensayo SCRIM relacionan las capacidades mecánicas de las mezclas con el deslizamiento de los vehículos en la carretera, la durabilidad y el mantenimiento en buen estado de la misma.

Las Mezclas Bituminosas de Áridos Siderúrgicos son mezclas que tienen menores costes de mantenimiento que otras fabricadas con áridos silíceos o calizos, sin comprometer los niveles de seguridad adecuados relacionados con el CRT y la macrotextura".

EXPERIENCIAS > Hormigón estructural

DOSIFICACIONES DE HORMIGÓN ESTRUCTURAL [kg/m³]							
MATERIAL	HE-06	HE-07	HE-08	HE-09	HE-10		
GRAVA ESCORIA NEGRA	515	600	550	540	590		
GRAVILLA ESCORIA NEGRA	550	600	550	540	590		
ARENA ESCORIA NEGRA	285	660	1200	300	395		
ARENA SILICE	800	760	-	810	900		
CEMENTO II 42,5 R	300	300	300	320	300		
ARENA DE MOLDEO	-	-	500	-	-		
AGUA	150	150	285	200	200		
ADITIVO SP	6	6	6	6	3		
A/C FINAL	0,50	0,50	0,95	0,63	0,67		

COMPORTAMIENTO DEL HORMIGÓN ESTRUCTURAL CEM II 42,5 R							
RESULTADO	HE-06	HE-07	HE-08	HE-09	HE-10		
ASIENTO [cm]	7	3	3	7	13		
ADITIVO SP EMPLEADO	Glenium ACE 255	Glenium ACE 255	Glenium ACE 255	Chryso 550	Chryso 550		
RESISTENCIA a COMPRESIÓN 7 días [MPa]	28,3	30	36,6	14,48	30,5		
RESISTENCIA a COMPRESIÓN 28 días [MPa]	-	36,4	44,8	-	35,8		



ÁRIDOS SIDERÚRGICOS

Motivación SOCIOECONÓMICA y MEDIOAMBIENTAL

Comisión Europea: Contratación Pública Verde

"proceso por el cual autoridades públicas tratan de adquirir productos, servicios y obras impacto con un ambiental reducido durante su ciclo de vida, en comparación con el de otros productos, servicios y obras con la misma función primaria que adquirirían en su lugar." Public procurement for a better environment, COM (2008) 400

BENEFICIOS

Administración:

- Incrementa la transparencia y eficiencia
- Permite lograr metas ambientales asumidas y reducir impactos ambientales
- Fomenta el ahorro económico al considerar los costes de ciclo de vida
- Mejora la imagen pública y es ejemplo para los consumidores privados

Sector Privado:

- Ofrece incentivos a la industria para innovar y ser más competitiva.
- Impulsa la innovación en productos y servicios,
- Refuerza la economía local y establece estándares ambientales para productos y servicios

Sociedad:

- Reduce el precio de los productos y tecnologías ambientales
- Mejora la calidad de vida al reducir impactos ambientales
- Establece un nexo de emprendimiento y empleo, e incrementa la concienciación sobre temas ambientales

SISTEMAS INDUSTRIALES SOSTENIBLES FOMENTANDO LA ECOLOGÍA INDUSTRIAL

Sistema productivo cíclico imitando el comportamiento de los ecosistemas naturales impulsando las interacciones entre los sectores económico, ambiental y social e incrementando la eficiencia de los procesos industriales

BENEFICIOS DEL EMPLEO DE ÁRIDOS SIDERÚRGICOS

- ✓ Reducción del consumo de materias primas naturales, aumentando la vida útil de estos recursos
- ✓ Reducción de emisiones en el proceso de extracción y preparación de estas materias primas
- ✓ Reducción de costes en vertederos y control de su utilización
- ✓ Reducción de emisión CO₂
- ✓ Reducción del impacto visual, edáfico y biótico
- ✓ Reducción de la distorsión paisajística por presencia de canteras y vertederos

Regulación Medio ambiental > Nacional

Art.16 de ley 22/2011, de 28 de julio, de residuos y suelos contaminados establece:

"Las administraciones públicas **promoverán** en el marco de **contratación de las compras públicas** el uso de productos reutilizables y de materiales fácilmente reciclables, así como de productos fabricados con materiales procedentes de residuos, cuya calidad cumpla con las especificaciones técnicas requeridas"

VERSOS18 (BILBAO): INTEGRANDO LOS VERTEDEROS EN LA ECONOMÍA CIRCULAR; 4º COMUNICACIÓN

EXPERIENCIAS EN LA MEJORA DE LOS PROCESOS DE VALORIZACIÓN DE ESCORIAS NEGRAS Y EMPLEO DE ÁRIDOS SIDERÚRGICOS

Dr. Jokin Rico Arenal

8 Noviembre 2018