VERSOS´12 Vertederos y Sostenibilidad

Palacio Euskalduna, Bilbao 21 y 22 de noviembre de 2012

Landfill Covers with Steep Slopes using Geosynthetics

Katja Werth, Dipl. Ing.

BBG Bauberatung Geokunststoffe GmbH & Co. KG

Germany

Burkard Lenze, Dipl. Geoök.

NAUE GmbH & Co. KG

Germany

Landfill Covers with Steep Slopes: Requirments on Long-Term Internal Shear Strength of Geosynthetic Clay Liners

- Introduction:
 - Application of GCL in Landfill Covers
 - GCL- Characteristics
- Internal Long-Term Shear Strength
 - Test Methode
 - Test Results
- Interface Shear Strength
 - Shear Box Testing
 - Stability Calculation based on Shear Box Tests

.based on laboratory testing oeriences 6X project and

VERSOS 2012, Bilbao

1. Introduction

Landfill Engineering with Geosynthtics

Landfill Capping

Landfill Base Lining

 $\ensuremath{\mathbb{C}}$ 2012 NAUE GmbH & Co. KG \cdot www.naue.com

Landfill Capping Systems

Composition of mineral layers and geosynthetic components

VERSOS 2012, Bilbao

2. Internal Long- Term Shear Strength

Internal shear strength Geosynthetic Clay Liner (GCL) and Geosynthetic Drainage Mat

Failure because of low internal shear strength

GCL components: two durable geotextiles and one unifom core of high quality sodium bentonite powder Needle-punched Geosynthetic Clay Liner (GCL)

Needle-punching of all components creating a unifirm internal shear strength

Measurement of the internal shear strength

Shear box tests to measure the hydrated shear strength for stabilty analysis

Peel test to measure the peel strength for quality control

Long-term shear strength testing with large scale tilt tables

Different GCL types have been tested in the 90's in order to test the long term shear performance 25° (2.1 : 1) and loaded with 31 kPa

Internal shear strength

of GCL

specimen

service lifetimes of GCL

Internal shear strength

Textured geomembrane

Metal food grater

Uniform adhesion of the wedges to upper and lower surfaces of GCLs

	Sample	Top layer		В	ottom layer	Peel strength N/(10 cm)	Therm al Lock
Tested GCL types	GCL 1A	300 g/m²	HDPE - nw	350 g/m²	HDPE - w/nw	230	yes
	GCL 1B	300 g/m²	HDPE - nw	350 g/m²	HDPE - w/nw	214	no
	GCL 2Aa	300 g/m²	PP1 - nw	350 g/m²	PP1 - nw / PP3 - w	119	yes
	GCL 2Ab	300 g/m²	PP2 - nw	350 g/m²	PP2 - nw / PP4 - w	163	yes
	GCL 2Ac	300 g/m² 500 g/m*	PP1 - nw PP1 - nw	350 g/m²	PP1 - nw / PP3 - w	111	yes
	GCL 2Ad	220 g/m²	PP2 - nw	110 g/m²	PP5 – w	110	yes
	GCL 2B	300 g/m²	PP1 - nw	300 g/m²	PP1 - nw / PP3 - w	60	no

GCLs with woven/ nonvoven GCLs with woven carrier layer and Thermal Lock

© 2012 NAUE GmbH & Co. KG · www.naue.com

carrier layer

Results of the 'long-term shear tests'

Time to failure using different testing liquids

Arrhenius diagramm of shear test results of GCL 2Aa and 2B

Retaining shear strength after '~250* years lifetime`

* Estimated lifetime referring to the long-term shear test results

Shear box tests with a normal load of 20 kPa after the testing period in 'long-term shear tests`

Internal shear strength

Sample	average maximum shear strength (load 20 kPa) [kPa]	average maximum internal friction angles [°]
Product 2Aa	59.4	71
Product 2B	31.7	58
Product 2Ad	28.4	54

Resistance of stabilized PP-fibers of geotextiles against oxidative degradation

Stabilized polyolifins has a high concentration of antioxidants which protect PP material from oxidizing

- Conclusion:
 - Special test device allows measurement of creep performance of GCLs
 - GCLs are tested under different temperatures, liquids and mechanical stresses
 - Exellent long-term performance of Thermal Lock treated GCLs and GCLs with nonwowen/woven composite carrier layer were measured
 - Eststimated service life of more than 250 years
 - High quality PP-fibers waranty long term tensile and peel strength
 - Tested GCLs meet GRI-GCL-3 specification

VERSOS 2012, Bilbao

3. Interface Shear Strength

Reasons of failure

Failure mechanisms

- Steep and long slopes
 - + wrong type of geomembrane (smooth side)
 - + high loads from cover (1 m soil)
 - + reinforcing element with poor tensile strength
 - + poor anchorage design
 - = poor friction
 - = sliding failure

Design basis on interface for cap lining systems against sliding on slopes

Sufficient stability against sliding stability – ultimate state No stability – sliding in slope direction

Interface shear strength

Geosynthetic Lining System in slopes - stability

Scope

- All layers are installed parallel to slope surface
- Avoiding any stresses in the lining element
- Cover layer causes stress in slope direction
- Avoiding sliding on interfaces => failure
- All forces have to be transferred by friction mobilization

Stability of sealing system against sliding

General design principles following EUROCODE 7 (Partial Safty Design Concept)

Determination of the required reinforcing element to reach a sufficient stability of the sealing system against sliding!

If utilisation $\mu > 1$

- 1. The veneer reinforcement "helps" to come back to $E_d \le R_d$ and is part of R_d .
- 2. If veneer reinforcement is required => Slope length is relevant (multiplied by the length).

Deficit long-term tensile strength

$$T_{G,d} = 1.0 \times ((t_{B,d} + s_{w,d} + t_{S,d}) \times I) - ((t_{f,d} + t_{s,h,d}) \times I)$$

(driving forces – resisting forces)

N = Normal load in the shear plane "above and below" T = Shear (friction) load parallel to the shear plane Different interface friction between geosynthetics and between geosynthetics ans soils

Interface shear box tests according to GDA E2-8 (2005)

Interface Shear Testing / direct shear box test

Mohr-Coulomb stress space

Input values - interface friction angles

• Using GM smooth/smooth

Secutex protection geotextile (nonowoven)

GCL Bentofix (cover geotextile = nonwoven)

Input values - interface friction angle

• Using GM Megafriction/Megafriction

Examples of interface shear values between different geosynthetics and soil. The indicated approximate values result from over 15 years of project experience. The specific design values must be determined on a project by project basis and follow as close as possible on-site conditions.								
 Thermally fused nonwoven achieves the higher value Is rarely designed 	Bentofix®	Secudrän®	Secutex [®] nonwoven	Carbofol® smooth	Carbofol [®] MegaFriction	Sand 0/2 mm	Gravel 8/16 mm	Mixed grained top soil
Bentofix®	33°	19-25°		11°	30°	29°	32°	26°
Secudrän®	19-25°			11°	30°	29°	32°	26°
Secutex [®] nonwoven			18°	11°	30°	29°	32°	26°
Carbofol [®] smooth	11°	11°	11°			18°		
Carbofol [®] MegaFriction	30°	30°	30°			25°		
Sand 0/2 mm	29°	29°	29°	18°	25°	32°	-	-
Gravel 8/16 mm	32°	32°	32°			-	36°	-
Mixed grained top soil	26°	26°	26°			-	-	28°

• Imput parameters for stability calculation based on shear box tests

Interface shear strength

Garanty slope stability with: -improoving interface friction angle -or using a geogrid for verneer reinforcement

Tensile strength

Calculation of the long term design strength of a reinforcing element

given from calculation:

• action forces:	
t _{B,d} =	8,944 kN/m²
s _{w.d} =	0,116 kN/m ²
t _{S,d} =	0,000 kN/m²
resisting forces:	
$t_{f,d} =$	6,582 kN/m²
t _{S,h,d} =	0,000 kN/m²
• calculation length:	
=	40 m

Calculation of the deficit long-term tensile strength:

$$\mu = ((t_{B,d} + s_{w,d} + t_{S,d}) * I) / (t_{f,d} + t_{S,h,d}) * I + T_{G,d})$$

$$T_{G,d} = 1,0^* ((t_{B,d} + s_{w,d} + t_{S,d}) * I) - ((t_{f,d} + t_{S,h,d})^* I)$$

$$T_{G,d} = 99,1$$

$$kN/m$$

The veneer reinforcement "helps" to come back to $E_d \le R_d$ and is part of R_d . If veneer reinforcement is required => Slope length is relevant (multiplied by the length).

Creep monitoring of the verneer reinforcement Installation of the strain gauches Field Tests/ Landfill **Duisburg-**Sudamin Elongation [%] 2,50 r 2,00 Results of in air tests` 1,50 1,00 0,50 Measured strain values Time [h] 0,00 2.000 4.000 6.000 8.000 10.000 12.000 14.000 0 16.000 (approx. 0,3 %)

Landfill "Furth im Wald", Bavaria

- Conclusion:
 - All internal and interface shear strength must be considered in stability analysis
 - Shear box tests are required
 - Different test devices and test performance may lead to different results
 - Sensitive use of test results is necessary

VERSOS 2012, Bilbao

VERSOS´12 Vertederos y Sostenibilidad

Palacio Euskalduna, Bilbao 21 y 22 de noviembre de 2012

Thank you for your attention. Any questions?

Katja Werth, Dipl. Ing.

BBG Bauberatung Geokunststoffe GmbH & Co. KG

Germany

Burkard Lenze, Dipl. Geoök.

NAUE GmbH & Co. KG

Germany